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Abstract 

The notion of an Ehresmann connection was introduced by Ehresmann (1950). In recent years 
it has been extensively studied by some authors. The main aim of this paper is to demonstrate that 
under some relatively natural assumptions lagrangian foliations admit Ehresmann connections. 
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1. Preliminaries 

In this section, for the convenience of  the reader, we will recall some basic definitions 

and results. The only new result of  this section is Proposition 2. 

1.1. Totally geodesic foliations 

A foliation on a complete Riemannian manifold (M, g) is called totally geodesic if its 

leaves are totally geodesic submanifolds of  (M, g). 

Let Q be the orthogonal complement of  T.T'; it defines a natural splitting of  the tangent 
bundle T M = T J r ~ Q. 

Let us fix a point x ~ M. For any pair of  curves t~ : [0, a] ~ M and/~ : [0, b] ~ M 

with the same starting point, i.e. a(0)  = fl(0), such that the curve or is tangent to the leaf 

passing through the point x, i.e. it is a leaf curve, and fl is tangent to Q, i.e. it is orthogonal 
to thefoliation, there exists a smooth mapping tr : [0, a]  x [0, b] ~ M such that: 

(1) the curves os : [0,a]  ~ M, trs = o I [0,a]  x {s}, s E [0,b], are contained in the 
corresponding leaves of  ~'; 

(2) tr 0 = a ;  
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(3) the curves tr t : [0, b] ---* M, tr t = o l{t} × ]0, b], t E [0,a], are orthogonal to the 

foliation; 

(4) ,7o -- ft. 
The existence of the smooth mapping tr allows us to push any orthogonal curve/~ along 

the curve ct and any leaf curve ct along the curve/~, namely 

~ : Cl ~ fl~Ol = 0 b and cq :/~ ~ ~t:fl = t r a .  

They map homotopic paths into homotopic ones, and these mappings depend on the ho- 

motopy class of the curve, i.e. if fl is homotopic to the curve fl' relative to its ends, then 
fl~ = /~. Therefore any orthogonal curve/~ • [0, b] ~ M defines a diffeomorphism of 
a neighbourhood of the point/~(0) in the corresponding leaf onto a neighbourhood of the 

point fl(b) in the corresponding leaf. Moreover, it is not difficult to verify that such a curve 
defines a global diffeomorphism of the universal covering of the leaf passing through the 
point/~ (0) onto the universal covering of the leaf passing through the point fl (b). The results 

of Hermann [13] ensure that these mappings send geodesics into geodesics, and therefore 
they are isometries for the induced Riemannian metrics on leaves. The set of orthogonal 

curves starting and ending in a given leaf L define a pseudogroup of local isometries of the 

leaf L which we denote by H (L) and which we call the tangential holonomy pseudogroup 
of the leaf L. It is not difficult to prove that the tangential holonomy pseudogroup of different 
leaves are equivalent [ 12,1,2]. 

Let K (L , x )  be the subgroup of zrl(L,x) of the homotopy classes of loops r in L for 
which r~y = y for any curve y tangent to Q and starting at the point x. In [2], the authors 
notice that K(L,  x) is a normal subgroup of :rl (L, x). 

Let Lx be the covering of L corresponding to the subgroup K (L, x), i.e. Lx is the quotient 
of the space C (L, x) of paths in L starting at x by the equivalence relation defined as follow s. 

Let rl ,  r2 : [0, 1] ~ L be two curves in the leaf L starting at the same point. We say that 
they are equivalent if they have the same end and the loop rl r 21 defines the class which 
belongs to the subgroup K (L, x). 

The group rr l(L,x) acts on Lx; let a = [r0] E zrl(L,x), then 

~[r]  = [r0r] E Lx. 

It is not difficult to check that the kernel of the homomorphism 

~rl(L,x) ~ Diff(Lx) 

defined above is equal to K (L, x). The quotient group, isomorphic to the image of this ho- 

momorphism, Hg (L, x) = Jrl (l, x ) / K  (l, x), consists of the so-called deck transformations 
of the covering. This covering space of the leaf does not depend on the point and is called 
the tangent holonomy covering of L. The group Hg(L) (we drop x) is a subgroup of the 
group of isometries of L. 

Proposition 1 [2]. There exists a natural surjective homomorphism from the group Hg(L) 
onto the holonomy group of the leaf L at x. 
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This homomorphism is injective if the foliation is without holonomy [2], or the foliation 

is Riemannian [6]. 
Let us denote by C(.T "-L, x) the set of  curves a : [0, l[ ~ M orthogonal to .T" and starting 

at x. Let 1/be a leaf curve starting at x (i.e. 1/: [0, l[ --* L) and 1/(1) = or(l). This pair of  

curves defines a mapping: ~(~,~) : [leaf curves starting at x} ~ r ~-~ r/ot~r ~ {leaf curves 
starting at x}. Calms [6] demonstrated that the mapping ~(a,o) induces a smooth mapping 
of L. He denotes by Sx the set of  all couples (or, 1/) of  curves in M such that: 
1. t~ is orthogonal to j r  and !/is a leaf curve; 

2. or(0) = 1/(0) = x and a (1)  = rl(l) e L. 
Elements of  Sx are called serviettes of  b r at x. The set admits a natural product structure 

such that 

(~(Otl,t/l)(Ot2,r/2) = (~(t~l,r/i)t~(t~2,r/2). 

To get a group different from the fundamental group of the leaf we have to pass to 
the quotient of  Sx by an equivalence relation. We say that two serviettes sl and s2 are 
equivalent if they define the same automorphisms of the set {leaf curves starting at x}, up 
to K(L, x). The quotient is denoted by ~?x and it is called the group of serviettes of b r at 

the point x. 
It is not difficult to prove that up to isomorphism the group ~?x does not depend on the 

point x of  M [6, B.7]. Directly from the definition and the construction of the group 27x one 

can deduce that the mapping ¢~ defines an injective homomorphism • : ,Ux --> Diff(Lx).  
About the image of this homomorphism one can prove the following theorem [6, B.8]. 

Theorem 1. With the above notation: 
(a) the image of the mapping ff~ is a subgroup Fx of the group of isometries of Lx; 
(b) the pseudogroup of tangential holonomy H (L ) is equivalent to the pseudogroup of 

local isometries of Lx generated by Fx. 

At the end let us stress that it is not difficult to verify that if the orthogonal bundle T F  ± 
is integrable, then the foliation defined by it is Riemannian. Thus we have a kind of  duality: 

Riemannian - totally geodesic; if the tangent is Riemannian, then the orthogonal is totally 
geodesic and vice versa. 

1.2. Ehresmann connections 

The concept of  an Ehresmann connection appears for the first time, under a different 
name, in [8]. However, recent studies of  totally geodesic foliations have brought out its 
importance [1,5,191 in geometry. 

The notion of  a foliation admitting an Ehresmann connection is a natural generalization 
of the concept of  a totally geodesic foliation, namely: 

Let (M, .T') be a foliated manifold. A supplementary subbundle Q to T,T" is called an 
Ehresmann connection if for any point x E M and any pair of  curves t~ : [0, a[ ~ M and 
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fl : [0, b] ~ M with the same starting point, such that the curve a is a leaf curve, and fl is 

tangent to Q, there exists a smooth mapping tr : [0, a] x [0, b] ~ M such that: 

(1) the curves trs : [0,a] ~ M, trs = tr I [0,a]  x {s},s ~ [0, b], are leaf curves; 

(2) ~r0 = or; 
(3) the curves a t : [0, b] ~ M, <r t = tr I {t} x [0, b], t e [0, a], are tangent to Q; 
(4) tr ° = /3 .  

In Section 1.1 we have noticed that the orthogonal bundle to a totally geodesic foliation 

on a complete Riemannian manifold is an Ehresmann connection for this foliation. By the 

duality Riemannian - totally geodesic the orthogonal bundle to a Riemannian foliation is 

also an Ehresmann connection for this foliation. 

Very many results concerning Riemannian foliations were proved using the properties 

of  geodesics under the assumption that the Riemannian manifold is complete. However, in 

most cases it is sufficient to know that the orthogonal subbundle is an Ehresmann connection 

and to demonstrate that it is an Ehresmann connection it is not necessary to assume that the 

Riemannian metric is complete. Let us give an example. 

Example.  Let M = R 3 - { ( 0 ,  0)} × R and p : M ~ R x R be the projection (x, y, z) 

(x,y).  Then p(M) = ~2 _ {(0,0)}. With the standard metric go on M induced from 

the euclidean space ~3, the Riemannian manifold (M, go) is not complete; however, the 

orthogonal bundle to the foliation defined by the connected components of  the fibres of  

the submersion p is an Ehresmann connection for this foliation. To put it succinctly, we 

can define and work with an Ehresmann connection when certain geodesics are defined 

uniformly along the leaves. 

It is not difficult to verify that for foliations with an Ehresmann connection we can define 

the same objects and prove the "same" results as those mentioned in Section 1.1 for totally 

geodesic foliations. 

1.3. Symplectic manifolds 

Let (M, o~) be a symplectic manifold of  dimension 2n. A foliation ~- of  dimension n 

is lagrangian if for any vectors X, Y tangent to .F,, o~(X, Y) = 0. For more information 

on symplectic manifolds and lagrangian foliations, see [24]. The leaves of a lagrangian 

foliation are affine manifolds [24,16]. However, in general, we do not know whether they 

are complete or not as affine (fiat) manifold. 

A connection V on M is called symplectic if Vto = 0. This condition is equivalent 

to the fact that the connection V is the extension of  a connection in the Sp(n)-reduction 
B(M, Sp(n)), defined by the symplectic form, of  the bundle of  linear frames L(M). 

In [15] the author demonstrates that, cf. Theorem 1, given a supplementary lagrangian 

subbundle Q there exists a unique symplectic connection V, called bilagrangian, satisfying 

the following conditions: 
(1) VT~-  C T.7 r and VQ c Q, 
(2) T(X, Z) = 0 if X ~ T.~,, Z e Q, where T is the torsion tensor of  V, 
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(3) T ( X ,  Y) = -Tra([X,  Y]) = 0, X, Y ~ T.~,, 
(4) T(X ,  Y) = -zr~([X,  Y]), X, Y E Q, 
where ~Q and 7r~- are the orthogonal projections on Q and T.7 r, respectively. 

The first condition ensures that the connection is, in fact, a connection in the GL(n)  x 

GL(n)-reduction of the linear frame bundle corresponding to the decomposition T M  = 

T.T'~ Q. Such a bilagrangian connection V is torsion free and flat along F and flat along Q, 

thus only mixed components of the curvature can be non-zero. In [15] one can find explicit 
formulas for this connection. 

Now let us assume that the supplementary subbundle Q is involutive. In this case the 
associated bilagrangian connection is torsion free and leaves of both foliations are affine 

manifolds. We say that the foliations are Heisenberg related [ 18] iff their tangent bundles are 

locally spanned by locally Hamiltonian vector fields ¢o*dqi and w*dpi,  respectively, with 
the functions qi, pi, i = 1 . . . . .  n, satisfying the canonical Poisson bracket rules: [qi, qj] = 

0 = [Pi,Pj],  [qi,Pj] = ~ ,  i , j  = 1 . . . . .  n. 
Hess proved the following proposition. 

Proposition 2. I f  ~ and Q are Heisenberg related foliations iff the associated bilagrangian 

connection is flat. 

For simplicity, we prefer to work with the bilagrangian connection and not with the 

induced one on T~'.  Similar results can be formulated and proved using the induced con- 
nection. 

We call the bilagrangian connection associated with the subbundle Q tangential if 

I 2 ( x , Y ) = 0  for X ~ T .~  and Y E Q. 

Let us consider V as a connection in the GL(n )  x GL(n)-reduction of the linear frame 
bundle. Its connection form w v takes value in the Lie algebra gl(n) x gl(n).  Thus ~o v 

can be decomposed into two components off = (w 1, oj2). Let VI and V2 be the induced 

connections in the vector bundles T ~  and Q, respectively. The projections try and zrQ 
define the mappings of the corresponding bundles of frames: 

L(.T') , PY B(M, GL(n )  × GL(n ) )  PQ , L ( Q )  

id id 
M " M ' M 

where L(.T') and L ( Q )  denote the bundles of linear frames of T.T" and Q, respectively. 
If  o~l and w2 are the connection forms of Vl and V2, respectively, then oJ 1 = p~-wl and 
off = p~2arz [28]. Since the Lie algebra is of the semi-diagonal form the structure equations 
split into 
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1 i i 61i o)i $-2 i =do) i + ~[o9,o9 1, =dO i + A O i, 

where i = 1,2, 61 = (611,612), 0 = (01,02), if2 = (~('21,~(2 2) and the forms 6 1 1 , 6 1 2 0 1 , 0 2  

take value in •n but the forms I2 1, $'2 2 in gl(n). It is not difficult to show that $'2 2 = p~2 ~22 

and 612 = p;2 612 where 122 and 612 are the curvature and the torsion forms of the connection 

w2, respectively [28]. From the very definition of the torsion form and the properties 2 and 
4 of the connection V, it is easy to obtain that ix 612 = 0 for X 6 d p -  I (Q). Thus ix 612 = 0 
for X E dP2 1 (Q) and for that matter for X ~ T-TQ. 

On L(Q) the forms 0z and d02 define a natural foliation -TQ of the same dimension as 

-T and projecting by P2 onto -T. For X ~ T-TQ ix612 = 0 iff ixto2 = 0. Since T-TQ (- 
dp21(Q), the foliation -TQ is horizontal and the connection V2 is basic (or adapted in 
Bott's sense [3]). On the other hand we know that I2(X, Y) = 0 for X, Y 6 d p -  I (T-T), so 

~22 (X, Y) = 0 for X, Y E dP21 (T-T), and if we assume that the connection V is tangential, 
then ix ~22 --- 0 for X ~ T.T O. We have just proved that the connection o92 is transversely 
projectible (or foliated) [28,20]. Moreover, our assumptions ensure that this connection is 
flat. Therefore we have demonstrated the following fact. 

Proposition 3. Let -T be a lagrangian foliation on a symplectic manifold ( M, w). l f  -T admits 

a supplementary lagrangian subbundlefor which the associated bilagrangian connection is 
tangential, then the foliation -T is transversely affine, i.e. admits a transversely projectible, 

flat, torsion free connection. 

1.4. Physical applications 

To justify our interest in Ehresmann connections we would like to recall just one but 

important application. Lagrangian subbundles appear naturally in the quantization proce- 

dure. A careful look at the Kostant-Souriau quantization of classical observables reveals 
that it also depends on another supplementary lagrangian subbundle. Hess [15] improved 
this classical method using the bilagrangian connection described in Section 1.3. He claims 

to unify in this way several approaches to the quantization. In this paper we show that under 
some very natural assumptions the lagrangian foliation and the supplementary lagrangian 

subbundle have certain, very precise properties, which also influence the topology and ge- 
ometry of the ambient symplectic manifold. It should have some important consequences 
for the quantization [15,18, 21-23]. 

2. Main results 

Assuming the completeness of leaves as affine manifolds we obtain the following theorem. 

Theorem 2. Let -T be a lagrangian foliation on a compact connected symplectic mani- 
fold. Let Q be a supplementary lagrangian subbundle to T Jr for which the bilagrangian 
connection is tangential. I f  the leaves of -T are complete affine manifolds then this subbundle 
Q is an Ehresmann connection for the foliation -T. 
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The existence of  an Ehresmann connection has some important consequences for the 
foliation [ 1,2]. 

Corol lary  1. Under the assumptions of Theorem 1 universal coverings of leaves are 
affinely diffeomorphic. 

Corol lary  2. Let .~ be a lagrangian foliation on a compact connected symplectic man- 
ifold. Let Q be an integrable supplementary lagrangian subbundle to T.T: for which the 
bilagrangian connection is tangential. If  the leaves of ~ are complete affine manifolds then 
the universal covering 1(4 of M is an affine product L x K where L is the universal covering 
of leaves of.7 r and I( is the universal covering of leaves of Q. Moreover, leaves of.T: and 
Q intersect one another. 

As a corollary of  Theorem 1 we get [2]; 

Corol la ry  3. If ~ r has a compact leaf Lo with finite HQ(Lo, xo), then every leaf L of ~: is 
compact with finite H Q ( L, x ). 

In our case Theorem 1 can be reformulated as follows. 

Theorem 3. Let ~F be a lagrangian foliation on a compact connected symplectic manifoM 
M. Let V be a complete tangential bilagrangian connection for jr. Then for any leaf L 
the tangential holonomy pseudogroup 7-(( L ) is equivalent to the pseudogroup generated by 
a subgroup F of the affine transformations of the tangential holonomy covering of leaves 

of Y. 

As we have said the leaves of  a lagrangian foliation are affine manifolds. Therefore the 

fundamental group zrl (L, x0) of  a leaf L of  ~" admits two natural representations into the 

linear group GL(n). The first one tp : Zrl(L, x0) --~ GL(n) is the linear representation of 
the germ holonomy representation of  the leaf, i.e. 

~o([7]) = dxohy, 

where h~, is the holonomy of the leaf L corresponding to the loop y. The second one 

: 7ri (L, xo) ---> GL (n) is just the linear holonomy representation of  the affine manifold 
L [9]. Inaba [ 16] has proved that 

lp t o ~o = id. ( , )  

This relation provides us with some conditions assuring the completeness of  the affine 
structure of  compact leaves. Let us formulate two theorems. In the first one we provide 
some known conditions which ensure the completeness of  the affine structure of  leaves. In 
the second one these conditions are transposed by the relation (,).  

Theorem 4. Let ~r be a lagrangian foliation of a compact, connected, symplectic manifold. 
Assume that all leaves of.7 r are compact. Then if one of the following conditions is satisfied: 
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(i) the leaves are SO(p  - 1, 1)-affine; 
(ii) the fundamental groups of leaves are nilpotent and the holonomy representations are 

irreducible; 

(iii) the fundamental groups of  leaves are nilpotent and they have parallel volume forms; 
(iv) the fundamental groups of leaves are nilpotent and the developing maps are surjective : 

then any lagrangian subbundle supplementary to .T, for which the bilagrangian connection 
is tangential, is an Ehresmann connection. 

The theorem is a direct consequence of Theorem 2. The completeness of  the affine 
structure on leaves is assured by the results of  [9,11 ]. 

If  we take into account the relation ( , ) ,  then our considerations yield the following 
theorem. 

T h e o r e m  5. Let.T be a lagrangian foliation of a compact, connected, symplectic manifold. 
Assume that all leaves of ~F are compact. Then any lagrangian supplementary subbundle 

Q to ~ f o r  which the bilagrangian connection is tangential is an Ehresmann connection if 
one of the following conditions is satisfied: 

(i) the foliation ~ is an S O (p - 1,1)-transversely affine foliation; 
(ii) the fundamental group of the manifold M is nilpotent and the holonomy representation 

is irreducible; 

(iii) the fundamental group of the manifold M is nilpotent and the foliation .T has a parallel 
basic volume form; 

(iv) the fundamental group of the manifold M is nilpotent and the Zariski closure of the 
affine holonomy group acts transitively. 

Remarks. 
(1) If  Q is a foliation, then we can replace the assumption about the associated bilagrangian 

connection by the foliations are Heisenberg related [ 15]. 
(2) Under the assumptions of  Theorems 5 or 6, the universal coverings of  leaves are 

diffeomorphic, cf. Corollary 1. 
(3) The affine group Aft(n) is an algebraic group, i.e. it is a Lie group and an algebraic 

subset of  ~ n2 . A Lie subgroup N of  Aft(n) need not be an algebraic set. The Zariski 
closure of  a Lie group N is the smallest algebraic subset of  ~ r/2 containing N; it is, of  

course, a group. It is the closure of  the subset N of Aft(n) in the Zariski topology - 

the topology in which the algebraic sets are the closed subsets. 

Proof. Let us recall that the linear holonomy of a leaf can be read as the isotropy group of 
the affine holonomy group at a point of  the corresponding orbit [9,30]. The condition (i) 
via the relation ( , )  ensures that the leaves are SO(p  - 1, 1)-flat manifolds, thus, according 
to [7], they are complete affine manifolds. Theorem 2 concludes the proof of this case. 

According to the results of  [29] the conditions (ii)-(iv) are equivalent. The relation ( , )  
ensures that the affine holonomy representations of leaves have values in SL(p),  thus 
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the leaves admit a parallel volume form and their affine holonomy groups are nilpotent. 

Therefore they are complete affine manifolds and we can apply Theorem 2. [] 

It is tempting to articulate some relation between the Maslow class of  a lagrangian 

foliation and the existence of  an Ehresmann connection. A good testing ground would be 

one-dimensional foliations on the 2-torus. The Maslov class of  such a foliation is equal to 

the difference between the number of  "positively" oriented and the number of  "negatively" 

oriented Reeb components. Therefore there exist foliations with Reeb components whose 

Maslov class is zero [14]. 

Let us consider a foliation with Reeb components but whose Maslov class is zero. Any 

transverse bundle being one-dimensional is integrable. This foliation has also Reeb com- 

ponents and one can easily check that some leaves of  these two foliations do not intersect 

one another. This means that the foliation does not admit an Ehresmann connection [26]. 

On the other hand, foliations admitting an Ehresmann connection have no vanishing 

cycles [ 10] thus in the case of  codimension 1 foliations they have no Reeb components. 

Therefore their Maslov class must be zero. 

3. The proof of Theorem 2 

Let us assume that the manifold M is compact and the connection V is leafwise complete, 

i.e. the leaves are complete affine manifolds. In this case there exists e > 0 such that for 

any x e M the ball B(x, e) is convex. Therefore as leaves are totally geodesic the e-balls 

Bt. (x, e) in any leaf L are equal to the corresponding connected component of  B(x, e) N L. 
Thus there exists e > 0 such that the balls BL (x, e) are convex; among other things it means 

that the injectivity radius for leaves is greater than e. 

To prove that the subbundle Q is an Ehresmann connection we need to show that any pair 

of  curves (or, iT), ot - tangent to a leaf, tr - tangent to Q, can be extended to a full rectangle; 

to be precise: 

Let ot : [0,a]  --~ M be a leaf curve and let tr : [0, b] ~ M be a curve tangent to Q such 

that or(0) = tr(0) = x. We have to show that there exists a mapping r : [0,a]  x [0,b] 

M, sometimes denoted by ra,,r, called the rectangle defined by tr and ot such that for any 

t e [0,a]  r [ {t} x [0,b] is tangent to Q and for any s ~ [0,b] ~c I [0,a]  x {b} is tangent to 
9 r. Let Q = ( d p - l ( Q ) )  o kera~ v. 

First we will show it in the case of  a geodesic tangent to a leaf. Let ~ be a point of  B 
over x and 6r be the Q-lift of  tr and t~ be the horizontal lift of  or; it is an integral curve 
of  some vector field B(~), ~ ~ R n x {0} C R 2n. Using the flow of  B(~) we can fill 

the rectangle, namely t~ : [0,a] x [0,b] --, B and t~ : [0,a] x {t} = ~o(- ,#( t ) ) l [0 ,a ]  

where tp is the flow of  B(~). We would like to prove that for any X ~ Q [X, B(~)] ~ Q, 
which will ensure that the curves t~ s, s ~ ]0,a],  are tangent to Q. As our connection is 
bilagrangian, ~9(X, B(~)) = 0. Let X ~ Q and take B(~), ~ ~ R n x {0] C ~2n, then 0 = 
O(X, B(~)) = ( o l ( x ,  B(~)), O2(X,  B(~))). Thus 0 = O I ( x ,  n(~))  = d01(X, B(~)) + 
(.O 1 A 01(X, n(~))  : d01(X, n(~))  = - ~ 0 1 ( [ X ,  n(~)]),  as o) l (n(~))  : 0, o ) l (x )  : 0 

and 01(X) = 0 since 0 C ker 0 l. Therefore indeed IX, B(~)] e Q, for any X ~ 0 and 
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B(~), ~ ~ R n × {0} C R 2n. Now, since f2(X, B(~)) = 0 the structure equations yield 

{doJ v + [w v, ~oV]lfX, B(~)) = d w v f x ,  B(~)) = -½~oV[X, B(~)I = 0. 

Thus [X, B(~)] ~ kero~ v. Hence [X, B(~)] E ker01 A ker~o v = (~ for any X E 0 and 

B(~), ~ ~ R" × {0} c R 2". 
Thus the vector fields B(~) preserve the subbundle Q. Therefore for any s ~ [0,a] the 

curve ~ I{s} × [0, b] is a curve tangent to (~. The mapping x = Jr~ is a rectangle we have 

been looking for. Let us remark that for any t E [0, b] the curve K I[0, a] × {t} is a geodesic 
tangent to : ' .  

Let o : [0, b] --+ M be any curve in M tangent to Q and let c~' : [0, a] -+ M be any leaf 

curve contained in BL (x, ¢). As expo (t)[B(Oo (t), F.) is a diffeomorphism on the image for 

any t ~ [0, b] we define our rectangle as follows. 

We put x ( s , t )  = Kcts,ol[O,tl(S,t) where c~s is the geodesic in L linking x with u(s).  
Our previous considerations concerning the rectangle defined by a geodesic ensure that the 

mapping ~c is, in fact, a rectangle we are looking for. Let us stress that the choice of  t was 

independent of  the choice of  o.  

Now let c~ : [0, a] --+ M be any leaf curve in M. Then there exist points 0 = so < 

Sl < • • " <Sm = a suchtha t foranyi  Ot(Sil),Ol(Si+l) C. B(Ot(Si-1),E). Letoti =otl[si,si+l]. 
Let K1 be the rectangle corresponding to o and oq. The curve Ol = I¢l{sl } × [0, b] is tangent 

to Q and ol (0) = ot2(sl). For ol and u2 we have a rectangle K2. After m steps we have our 
rectangle, namely ic = KI U • • • t2 ICm. 

Once again let u : [0, a] ~ M be a leaf curve and o : [0, b] ~ M be the Q-horizontal 

curve with or(0) = a(0) .  For the rectangle K defined by the pair a,  o ,  the curve ot~to is 
Q-horizontal; the curve o~ot is a leaf curve passing through o (b). From the construction of  

the rectangle one can easily notice that if ct is a geodesic of  V, so is the curve o~a. 

We have seen that the curve o defines a diffeomorphism from a neighbourhood of o (0) 

in the leaf L0 onto a neighbourhood of  o (b) in the leaf L 1 passing through these points. 

This mapping is called the holonomy along o.  It maps geodesics into geodesics, so it is a 

local affine transformation. Therefore we have proved the following lemma (cf. Section 5 

of  [2]): 

L e m m a  1. A n y  lagrangian subbundle Q supplementary  to the fol iat ion ~ preserves the 

connection V.  

This lemma ensures that Corollary 1 is true. Therefore we have completed the proof of  

Theorem 1. 

Final remarks. 
(1) In Theorem 5 we have assumed that the leaves of  the foliation are compact in order 

to prove that the afline structures of  leaves are complete. If  we drop this assumption 
using our method we cannot prove that transverse lagrangian subbundle is an Ehres- 

mann connection. However, our foliation is a transversely complete transversely afline 
foliation [29]. Such foliations have some very interesting properties [27,29,30]. 
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Combining the methods developed by Cairns in [5] with ours it is not difficult to prove 
the existence of Ehresmann connections for foliations admitting adapted connections 
satisfying similar conditions. 
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